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(3) we have 

The suggestion to look for exact solutions of (1) with a linear dependenceofthevelocity 
on the spatial coordinate was made by V.P. Korobeinikov. 
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THE INFLUENCE TENSOR FOR AN ELASTIC MEDIUM WITH 
POISSON'S RATIO VARYING IN ONE DIRECTION* 

S.YA. MAKOVENKO 

We construct an analogue of the known Kelvin-Somigliana tensor for an 
unbounded elastic medium with a Poisson's ratio that varies in one 
direction and a constant shear modulus. We deduce the corresponding 
force tensor. We also consider the effect of the temperature. The 
effect of inhomogeneity is demonstrated by examples. 

1. Initial relations. We can attach the following form to the resolving equations 
of the linear theory of elasticity of the inhomogeneous medium under consideration in a 
Cartesian coordinate system Zi (i = i, 2,3)/2/: 

am = -%,1 - %,% + %,., A.n = -%,z + %,I (i.i, 

dk = (i - vf-' [ysr i- v f%,, + Qt,,,) + (i + v) a61 - % (i-2) 
(Xi = %py'@'i (i = 1, 2). x, = 2p@'J,s*f . 

Here mrk, n are resolving potential functions, Xi are components of the volume force 
vector, @i are arbitrary volume force potential functions, e is the temperature, a is the 
coefficient of linear expansion, v is Poisson's ratio, p is the shear modulus, A is the 
Laplace operator and 7% is the two-dimensional Laplace operator (in the variables I% and 23. 
Partial derivatives are indicated by a comma followed by the index of the correspondingvariable. 

The components of the dislocation vector Ui and the stress tensor ail are expressed in 
terms of the potential functions according to the formulae 

W = (k + m),i + Veipen,p - bim,d 

“iJ = 2p ((k + ‘@,ij + eJ,,s”ejp -1 etps”,pj - &m,,J - ‘&‘“,,j + 

(I- 2~)~’ [VA (k + m) - Zwn,,- fi + vfae]} 

(4.3) 

(&y is the Kronecker delta and aif* are components of the Levi-Civita tensor). 
In the relations we have noted, Poisson's ratio is everywhere taken to be an arbitrarily 

differentiable or, in the yeneral case, partially-differentiable function of one variable =a, 
*Prikl.l'latem.~fekhan.,52,2,334-337,1988 
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and the shear modulus is taken to be a constant quantity. With a constant Poisson's ratio and 
no volume forces and temperature in relations (l.l)-(1.3), it is not difficult to recognize a 
special case of the Papkovich-Neuber representation /l/, and a well-known representation /3/ 
in the theory of homogeneous elastic media. 

The following representation will prove useful in the future: 

11 - v (~sil-' = D + B (4 (1.4) 

where the constant D is chosen so that the integral. 

C = Em h_J, ; B (%I d% 
4% 

is well-defined. 
If, for instance, 

V (29) = Yle (--+J -I- ??e (G) 

@ fQ is a Heaviside function /4/, Vi are fixed constants), then 
(1.6) 

nzl (_ .__), H=S(&d-&I), B=Hsignr8, C=O. I + I 
2 l--vi I- Y* 

2. Auxiliary singular solutions. Let K(z~),~(B) be, respectively, the point of 
observation and the source point (the singular action point), 6(zi - yi) the density of the 
singular action (the Dirac function /4/) and let 

The following transcendental-operator decompositions and equalities hold: 

0 = - COS y (ZQ - &'. R-1 = COS y (zs - y&F 

o,*J = +o = R-' , Ao = 0, Ao,,, = -4~~6 

(the latter holds in a generalized function space /4/j. 
Suppose it is required to find a solution of the non-uniform Laplace equation 

Af = (D + 6) VR-‘.I WI 

0 (li) is an arbitrarily-oriented unit vector) that obeys the symmetry condition and the 
boundary condition 

f (I, y) =- f (Y, 6, ,*‘,‘-“- Vf =o * tw 

Taking account of (2-l), we transform Eq.(2.3) into an ordinary differential equation 

f,as + v”f = (D + B) v cm Y (% - l/J) r-1.1 
(y is treated as though it was a constant parameter), whose solution is known /5/. The follow- 
ing transition from a transcendental solution to one expressed explicitly in terms of elemen- 
taryfunctionsis also accomplished on the basis of (2.1). We add some solutionsoftheuniform 
LapLace equation to the solution so obtained in order to satisfy conditions (2.4). As a result, 
the required solution takes the form 

f = ‘/,L.l; L = VB_- n,QZ (2.5) 

j,, = $ =a - cx,, h, = h, = co, t, = 1, = zII, t, = t4 = I/; . 

The addition of the index % to a function here and henceforth indicates the replacement 
of the argument zs-ys of this function by the new argument 28 + Ya - 2%. 

3. Action of the unit force. We assume that a unit force with density acts on the 
elastic space. Taking account of (2.2), we can write 

4nX= -Ay'ol = Ao,& 
from which follows 

COJZ, = a@, = -ugls = q&o, q = (8np)-‘*. 

We obtain from (1.1) 
J3.1) 

m = -qVo.l, n = -qv x n,wl. (3.2) 
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From Eq.(l.Z), taking account of the dependence (3.1), (3.2) and of (2.5) we obtain 

k=--Ytg[L.1+2(V.lo-22nJ.V1~.~)]. (3.3) 

The components of the influence tensor and of the force tensor are determined by the 
relations 

u=IJ-I, o=F.l. 

From (1.3) and the solutions (3.2), (3.3) it follows that 

U = 2q(ER-' - 'IdVL) 

F =-(4s)-*('/aVVL - [v(i - v)-%V .t_ VIZ + niVnr] 8-l) 

(3.4) 

(E is a unit tensor). We can immediately verify the correctness of the reciprocity principle 
and the balance condition 

U(x,y)=UT(y,x), V.F=--E8. 
For a homogeneous 'space, (Li=DR,jJ, representation (3 

ones /l, 4/. 

4. Effect of temperature. It is appropriate to set 
accoruance with properties (2.2) 

4) reduces to some well-known 

0=6 in (1.2). Then, in 

The components of the temperature displacement vector and of the stress tensor take the 
following form, in accordance with (1.3) and (4.1): 

ne=-AVR-1, 
In oe=-ti(VV-EAfR-' . 

2s (4.2) 

It follows from the dependence we have obtained that the field of displacementsandstresses 
in an elastic space with a variable Poisson's ratio depends only on the last singular thermal 
action at the point. 

Suppose we are given a temperature distribution e(x) in the volume V, and let the 
temperature be zero outside this volume. As in a homogenous space, we introducethepotential 

x = (4n)-‘~~~ R-IA0 (y) dug . 
v 

In accordance with 

We can also arrive 
following formula which 

(4.2) 
“e (4 = - vx, Q(X)=-2p(VV-EA)r . (4.3) 

at the first expression in (4.3) by a different route, based on the 
follows from a theorem in /l/ concerning reciprocity 

u*(x) =2Ps $SS ~~1-~(Ys)l~~-2~(Ys)l-~(Y) V**U(Y*x)du@ 
V 

and the following easily-checked relations. 

5. Examples 
of the form (1.6). 

Let the space be characterized by a stepwise-varying Poisson's ratio 
In the given case, the functions O,R' in (2.5) will be 

hl=DR+HI(/r,/-Iy,I)o,,+(s,fy,)lnrl- 
'l,If (0 - @(sign zI) + sign yt) 

0' = HI& + m),,sign=, + (o. - o),~ sign ys + 2lnr] 
elt = "E&l = 

In accordance with (3.4), we deduce expressions far the components of the influencetensor 
and the force tensor 
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In particular, at the origin of coordinates (~3 = 0) under the assumption Y1 = Y, 0, 
we have 

Fs33 = .-.._L 
%I I Y3 I= [H + 2 (1-t D) sign ~~1 

and under the assumption y,= y,= 0 we have 

1 F,,I = - ~ 
827 I Yl I* 

(2-- D)signyr . 

The difference in the values of the stresses calculated according to the expressions 
given here between the cases with Ye= O,Y,= 0.45 (for an inhomogeneous medium) and VI = Y2 = 
0.225 (for a homogeneous medium) reaches 14-17s. 

Now let the state of stress in the inhomogeneous space under consideration be created by 
the heating of two non-interesting spherical volumes VI and V, with respective radii a1 and a4 
and centres (O,O, (I,) and (0,0,--a,) to the constant respective temperaturesSQ and 8,. Inside 
each volume, the material is homogeneous and the states of stress and of deformation of the 
medium are, as has earlier been established, indifferent to the behaviour of Poisson's ratio 
outside the given heated volume, and so by analogy with well-known expressions .for a homo- 
geneous medium /l/ we can write 

Fig.1 shows the distribution of the relative normal stress O,= 

3~,seJ(4g~@) along the axis z= zJa that passes through the centres 
of the spherical volumes, with e,= -8, = 0 = con&, LI~ = az= a for an 
inhomogeneous medium (vl= 0. 1,s L= 0.4, curve 1) and for a homogeneous 
medium (vr= Y*= 0.1, curve 2). We can see the important influence 
of the inhomogeneity of Poisson's ratio on the distribut~onofthermal 
stresses. 
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